If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25(x^2+160x+120)=0
We multiply parentheses
25x^2+4000x+3000=0
a = 25; b = 4000; c = +3000;
Δ = b2-4ac
Δ = 40002-4·25·3000
Δ = 15700000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15700000}=\sqrt{10000*1570}=\sqrt{10000}*\sqrt{1570}=100\sqrt{1570}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4000)-100\sqrt{1570}}{2*25}=\frac{-4000-100\sqrt{1570}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4000)+100\sqrt{1570}}{2*25}=\frac{-4000+100\sqrt{1570}}{50} $
| (x-17)+63=180 | | 18z-(8z-7)=67 | | 3.1×t=27.9 | | 10=3/8x-17 | | -8=-2(w-6)+-2 | | 2(76-8x)=89-9x | | 60+(2x+3)+(x-5)=180 | | 2x-34=50 | | (3t-16)/32t^2=0 | | 27x=(-5+28×) | | 12+2/3b=10 | | 4n^2-28=0 | | 4(x-1)^2=-100 | | 5x-4.9x^2=40 | | 18x/810-18x=1 | | 5x−15=40 | | -2x-2÷2+5=-4 | | 4-7x-1=3-7x | | 2a–9=2a+5 | | 5(x-3)-9=26 | | 3(g-17)-3=3 | | x2=144+25 | | 18-5x=2x | | x4+2x3=10x2 | | 16+3x=95 | | f/3+-9=-10 | | x4+2x3=10x | | p=-9(14p-8)-4p= | | 2.5x-(1.1x-2)=2x(0.7x) | | 2/8=5/n | | H/2+3=3;h/4-1) | | (3x-1)(x+1)=(3x)(3x) |